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Abstract

This paper deals with the direct and simultaneous estimation of parameters used in some constitutive laws. Whole-
field data captured in mechanical configurations which give rise to heterogeneous stress fields are processed. Since no
analytical relationship is available between measured data and unknown parameters, a specific procedure based on a
relevant use of the principle of virtual work is proposed. The main advantage is to provide directly the unknown pa-
rameters. The main features of the method are described in the paper. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The determination of parameters that govern the constitutive equations of advanced materials is a
challenge that becomes difficult to face when the number of parameters is significant. Such a case occurs
when anisotropic materials or refined non-linear laws are considered. The usual approach consists of
performing several tests like tensile tests and fitting the model with the experimental data. However, the
number of tests increases with the number of parameters. Moreover, parasitic effects can disturb the stress
field which is usually expected to be uniform when tensile/compressive tests are performed. This case occurs
for instance when off-axis anisotropic materials are tested (Pagano and Halpin, 1968; Pindera and Hera-
kovich, 1986; Pierron et al., 1998) or when the span-to-depth ratio of the coupon is small, as in the case
of the through-thickness testing of laminated structures (Gipple and Hoyns, 1994; Mespoulet, 1998;
Broughton et al., 1998; Broughton, 1994 for instance).
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These drawbacks can be avoided by using tests on plate specimens. In this case, only one coupon is tested
and the stress field which occurs in the specimen is heterogeneous. Hence several parameters influence the
mechanical response of the coupon. They can therefore be simultaneously identified if a suitable strategy is
used. For instance, the natural frequencies of vibrating composite plates depend on the bending stiffnesses.
To measure them, mixed experimental/numerical procedures have been proposed in the literature (Sol,
1986; Wilde, 1990; Pedersen and Frederiksen, 1992; Ayorinde and Gibson, 1993; Deobald and Gibson,
1988; Mota Soares et al., 1993; Araujo et al., 1996; Frederiksen, 1997; Cunha and Piranda, 1999; Bledzki
et al., 1999; Hwang and Chang, 2001). First a numerical model is built up with the finite element or the
Rayleigh-Ritz methods. This model provides the first natural frequencies which are used with corre-
sponding measured ones to define a residual which is minimized iteratively with respect to the parameters to
be identified. Such approaches are efficient but limited to elastic (or viscoelastic) bending properties: in-
plane stiffness parameters cannot be identified with them. Moreover, since the strain level is very low in
dynamics, non-linear responses of materials cannot be detected and identified. Another way is to identify
the parameters from static tests on a plate specimen in which an heterogeneous stress field occurs. If a
closed-form solution for the actual strain/stress field is available, some local measurements with strain
gauges lead to the parameters (Prabhakaran and Chermahini, 1984). In this case however, only the elastic
moduli of an orthotropic material can be measured and one has no freedom concerning the shape of the
specimen. Moreover, the boundary conditions in the experiment must be exactly those of the model. When
no closed-form solution is available, procedures based on the updating of finite element models have been
developed (Hendricks, 1991; Rouger et al., 1990; Okada et al., 1999; Wang and Kam, 2001), either in the
case of a reduced number of measurements or in the case of whole-field data. This last case occurs when the
strain field is measured onto the surface of the specimen with an optical method. Updating finite element
models exhibits however some drawbacks which will be discussed below. When whole-field data are pro-
cessed, it will be shown that these drawbacks can be avoided by using another strategy called the virtual
fields method (VFM). This method consists in applying the principle of virtual work to the specimen with
particular virtual fields (Grédiac, 1989).

In the present paper, the objective is to propose a dramatic improvement of the VFM, since a procedure
for automatically finding virtual fields is proposed. The headlines of the method are recalled in the first part
of the paper. Then, it is shown that applying the VFM with some special virtual fields directly provides the
unknown parameters independently one from the other. Some cases of non-linear mechanical responses are
also considered. Finally, a general numerical procedure for finding in practice these special virtual fields is
proposed. The numerical simulation of the approach is described in a companion paper (Grédiac et al., 2002).

2. Determining material constants with the virtual fields method

Let us consider a solid of any shape subjected to prescribed loading and displacement (see Fig. 1). In the
general case, no closed-form solution for the actual displacement/strain field is available and the problem is
to retrieve the parameters governing the constitutive equations of the material assuming that the displace-
ment/strain fields as well as the loading are measured with some suitable devices. If body-forces distributions
are neglected, we only have as load possibility traction (or stress vector) T(M,n) over S;, where M is any
point of S, and n the vector perpendicular to S, at point M. Over the remaining points of the boundary: S,,,
the displacement field u is prescribed: u = u. The principle of virtual work may be written as

/Vo:e*dV:/SfT(M,n)-u*(M)dS (1)

where o is the stress field, €* the virtual strain field, ¥ the volume of the solid, * the virtual displacement
field. This equation is valid for any kinematically admissible (KA) virtual field (u*, €*), that is, u* = 0 over
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SfﬁT=f

Fig. 1. Solid of any shape.

S,. Let us now introduce the constitutive equations which are assumed to be polynomial. With the usual
rules for contracted indices (xx — x, yy — y, zz — z, yz — ¢, xz — r, xy — s) and summation of these in-
dices, the stress/strain relation may be written in the case of linear constitutive equations

0; = Qyj; (2)
Feeding the above constitutive equations in Eq. (1), the principle of virtual work may be written as
ﬁgﬁgdvzﬂ1m4mqums 3)
X
Assuming that the constitutive material is homogeneous, the O;;’s do not depend on x, y and z, thus
oy /V g€ dV = /S T(M,n) -u*(M)dS 4)
X

The problem is to determine the O;;’s. It is a trivial matter to see that any different virtual field provides a
new linear equation of the type of Eq. (4). The so-called VFM consists in writing the above equation with as
many different virtual fields as unknowns. This leads to a system of linear equations

PQ =R (5)

where P is a square matrix and Q a vector whose components are the Q;;’s. The above system provides the
unknown parameters after inversion. This method, introduced first in Grédiac (1989), has been successfully
applied to bending (either in statics (Grédiac and Vautrin, 1990; Grédiac, 1996a,b), or in dynamics (Grédiac
and Paris, 1996; Grédiac et al., 1998)), to in-plane (Grédiac and Pierron, 1998; Grédiac et al., 1999) and more
recently to through-thickness composite characterization, either with a linear elastic (Pierron et al., 2000;
Pierron and Grédiac, 2000) or a non-linear response (Grédiac et al., 2001). A keypoint of this general
identification method is the determination of the virtual fields, since these fields directly influence the degree
of independence of the equations in the linear system (5). In these previous studies, the virtual fields were
chosen intuitively, using a trial-and-error procedure, in such a way that the different equations of the system
were “‘sufficiently’” independent. The independence of the equations is in fact directly related to the sensitivity
of the identified parameters to noisy measured displacement/strain components. Hence, it directly influences an
important aspect of the applicability of the method: its stability. It is therefore essential to obtain virtual
fields leading to independent equations when experimental data are processed since noise is unavoidable in
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this case. Some practical rules were applied for finding these fields in practice. For instance, the fields were
built up in such a way that the equations were partially uncoupled, i.e. some P;’s were zero in matrix P. These
fields led however to rather satisfactory results but they were not demonstrated to be the optimal ones. In
particular, it was not possible to find by hand a set of independent virtual fields that provided directly the
unknown material parameters, since the unknowns remained coupled in the linear equation provided by the
principle of virtual work, and then in the linear system (5). This system had therefore to be inverted without
any guarantee that the independence of the equations was “‘sufficient” in all cases.

The main improvement of the present work is to provide a procedure which allows the determination of
virtual fields which directly lead to uncoupled equations in system (5). The VFM becomes therefore much
more attractive since no intuitive guess of the virtual fields is needed. Moreover, because of the uncoupled
equations, the stability of the procedure is expected to be better. Another feature shown in a companion
paper (Grédiac et al., 2002) is the fact that an infinite number of virtual fields is available for each unknown
parameter. Among all these virtual fields, optimized fields with respect to noisy data will be found. Such
optimized fields will lead to optimized values for the unknown parameters.

3. Special virtual fields for the direct identification of the unknown constants
3.1. Controlling the coefficients of the unknowns in the principle of virtual work

Let us take into account the symmetry of the stiffness matrix (Q;; = Q) in Eq. (4). Then the non-
diagonal stiffness components may be factorized. With this factorization, the synthetic expression of the
coeflicient of any stiffness component Q;; in the principle of virtual work (i = j or i # j) may be written as
(1/(1+06y)) [, (ejej.‘ + e,«ej*.) dV, where ¢;; is the Kronecker delta symbol. If a material constant (say Q,, for

instance, p # q) is to be identified, it is simply to be written that its coefficient is unity in the principle of
virtual work whereas the coefficients of the other material parameters are set to zero

* 1 * * * * *
Qxx/[; Exﬁde + -+ Q,‘jm /V(Gjei —+ Eiﬁ./)dV + -4 qu/V(qup + EPEq)dV + -+ st/V €S€S dV
—_—— J —_——
=0m3 =0m3 =1m3 =0m3
:/ T(M,n) -u*(M)dS (6)
St
To obtain such a set of particular coefficients in Eq. (6), at least one so-called special virtual field is to be
found. This virtual field, denoted hereafter a*, obeys the following conditions
condition I: @* is Kinematically Admissible (K.A.)
L [ (e;€ + €)dV =0 Vi or j
condition 2: { % I o g’*) : ?ép / #.q (7)
[,(e6 +e€)dV =1 ifi=pand j=gq

140

where €* is the special virtual strain field derived from the special virtual displacement field a*. It is
equivalent to saying that a set of virtual fields has to be found such that matrix P in system (5) becomes
unity: P =1L

3.2. Additional conditions
3.2.1. Applied load

In practice, the distribution of the load over S; remains unknown. Only the projection P of the resulting
force along a given direction t can be measured, typically by the load cell of a testing machine. P is defined by
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P:t-/S‘T(M,n)dS (8)

9

where the ““.” operator indicates the scalar product between two vectors.
Consequently, the special virtual fields must be such that

condition 3: W*(M) = at VM € S, 9)

where o is any non-zero constant. Indeed, with such a virtual field, the virtual work of the applied load (i.e.
the right-hand side part of Eq. (1)) can be expressed as a function of the measured resulting force P along
direction t

/T(M,n)-ﬁ*(M)dS:/ T(M,n)-octdS:oct'/ T(M,n)dS = oP (10)

In any other case, the distribution of the load over Sy must be known with measurements or through an
assumption to calculate the right-hand side in Eq. (1).

3.2.2. Actual field known over V' only

In practice, another conditions must be verified if the actual displacement/strain field is only known in a
part V' of V. Let §' be the boundary between J and V. Since the actual field is unknown over V' — V7, its
contribution to the integrals in condition 2 must be eliminated. Then, the special virtual field @* is such that

EM)=0 YMeV -V (11)

in other words, " is solid-rigid like over ¥ — V. Finally, the special virtual displacement field must be
continuous over the whole specimen, especially at the boundary S’ between V" and V’. Thus, we can write

if the actual field (u, €) is known over V' € V only, then

condition 4: w* is solid-rigid like over V — V"’ (12)
condition 5: @* is continuous over S’
3.3. Conclusion
With such a special field a*, we have the following expression for Q,,
qu:/ T(M,n) -a"(M)dS = aP (13)
S‘

In this equation, Q,, is directly equal to the virtual work of the external loading produced by the special
virtual field a*. This clearly shows that the VFM used with these special virtual fields directly extracts the
unknown material parameters from the measured data which are the actual strain field € over V or V' and
the resulting force P. The result in Eq. (13) could be troublesome in terms of units since a virtual work is
normally expressed in N x m, but it must be emphasized that the unit of the integrals in Eq. (6), which are
either equal to 0 or to 1, is in fact m*. Hence, the unit of the right-hand side in Eq. (6) is (N x m)/m* =
N/m* = Pa.

It is difficult to discuss rigorously the existence of the special virtual field @* in the general case and for all
the Q;;’s. It is clear however that if the state of stress is uniform, at most six coefficients or six combinations
of coefficients can be determined. In this case, the ;’s are constant and Eq. (1) becomes

a,«/e?de/ Tu; dS (14)
v S
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It is clear that whatever the choice of the virtual field, six constant ¢,;’s and therefore six groups of
mechanical parameters at most can be identified. In the case of plane stresses, three constant ¢;’s and
therefore three groups of mechanical parameters at most can be identified, while four are to be found for
instance in the case of an orthotropic elastic law. As a conclusion, only heterogeneous stress/strain fields
will be processed in the following to avoid this drawback.

3.4. Comparison with updating finite element models

Updating finite element model has been proposed in the literature to determine elastic constants
of composite plates from measured natural frequencies (Ayorinde and Gibson, 1993; Deobald and
Gibson, 1988; Mota Soares et al., 1993; Araujo et al., 1996; Frederiksen, 1997; Cunha and Piranda,
1999) or from displacement fields (Hendricks, 1991). Processing displacement data is also proposed in
Okada et al. (1999) to find parameters governing the elastic/plastic relationship of a metal. It is therefore
relevant to compare the present approach with the procedures based on the updating of finite element
models.

The headlines of both the finite element method and the present VFM are recalled in Fig. 2. Two
classical problems of the mechanics of solids are presented in this figure in the case of linear elasticity. In the
first one, often referred to as the direct problem, the displacement, strain and stress fields are unknown and
the material parameters are known. The second one is the problem presently under consideration. It is often
referred to as the inverse problem: the displacement/strain field is known whereas the material parameters
are unknown. It clearly appears that the finite element method is well suited for solving the first problem
when no closed-form solution is available, since the displacement at the nodes U are directly determined by
inverting KU = F. Updating a finite element model with respect to the material parameters for solving the
inverse problem suffers however some drawbacks:

e [terative calculations must be performed. At each step, the system KU = F must be inverted and this can
be time consuming. On the other hand, the VFM is a direct method.

e In practice, the load distribution remains generally unknown and only the global resulting force is mea-
sured. If a finite element calculation is performed, the load distribution must be input in the model.
Hence these calculations can only be performed under some assumptions concerning this distribution.
On the other hand, with the VFM, it will be possible to build special virtual fields that lead to a virtual
work of the external loading which only depends on the resulting force (see condition 3 above), as illus-
trated in Grédiac et al. (2002) for instance.

¢ In the same way, the actual imposed displacement distribution over S, is not necessarily null and can be
unknown over some parts of S,. This imposed distribution over S, must be input in a finite element
model. This can only be made with some assumptions. This problem is solved with the VFM since
the virtual fields are KA.

e In most cases, initial values of the parameters must be guessed to initiate the iterations and these initial
values play an important role in the convergence of the procedure.

e If non-linear constitutive equations are considered, iterative calculations must be performed for each set
of material parameters. In this case, fitting experimental and numerical data would lead to very heavy
calculations.

Eventually, the finite element method is the natural tool for solving problem 1 when no closed-form
solution is available. Updating a finite element model with respect to the material constants is suitable when
natural frequencies are considered as input data, but such a method is not well suited for solving problem 2,
i.e. when displacement/strain fields are to be processed.
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Principle of virtual work:

Jy Qijei;dV = [s, T(M,n).u*(M)dS (a)

/N

problem 1 problem 2
known | to be determined known to be determined | auxiliary
unknown
T u
geometry € t.Js, T(M,n)dS Q a
Q o geometry

€

l

discretization of (a)

|

+ (a.) verified Vu K. A Qijé‘ﬁje:dv — fS, T(M, n)u*(M)dS'
KU=F to determine @Qpq...
.. find 4* such that:
o U* K A.

/(c]el-}-e, dV=0VYi#por j#¢q

‘ . 1 5,1
o, (68 +e@)av =1iti=pand =g
° *( :atVMeS,
A
U,u, ¢ 0 J'

Qpg = fsf T(M,n).q*(M)dS

Fig. 2. The finite element method, as a solution of problem 1 and the VFM as a solution of problem 2 (case of elasticity).

On the other hand, it is worth noting that the VFM directly provides the unknown material parameters,
since the Q;;’s are directly expressed as functions of the measured field (u, €) in Eq. (13). It clearly appears
that all the measured data can be taken into account: the integrals in the principle of virtual work are
obviously discretized, but the refinement can be much higher than in the finite element method since no
inversion is required. Bearing in mind that an infinite number of admissible virtual fields verify the principle
of virtual work, the virtual fields can be selected to solve the problem of the lack of experimental infor-
mation on the actual loading distribution, as will be shown in the examples below. It is also worth noting
that no assumption is made on the displacement/strain/stress fields, apart from the type of constitutive
equations between the stress and strain components.
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3.5. Functionally graded materials

Let us consider a material whose properties spatially change inside the solid. Some examples of such
materials are described in Okada et al. (1999). The Q;;’s now depend on x, y and z. For the sake of legibility
and simplicity, let us assume that the evolution of each stiffness can be described by a polynomial of degree
n of y only (Okada et al., 1999), we have

0y = ay (15)

where the a;;,’s are constant and where k lies between 0 and a given value n. In this case, the principle of
virtual work may be written as

/V(a,-jkyk)ejede:/ T(M,n) -u*(M)dS (16)

Sy

Introducing the symmetry of the stiffness matrix, the above equation can be rewritten

1
axxo/ exeidVJr~~~+axxn/yxexeﬁdV+~~+a,~jk—/yk(eje;‘+eie;f> dv +---
v v ) 1+0; Jy

—_——
=0m3 =0m3 =0m3
1 r * * n *
+ apq,,répq Vy (eqep + epeq) ar+-.---- + ag, Vy g€, dV
| S —
=1m? =0m?
:/ T(M,n) -u*(M)dS (17)
S,

The principle of virtual work can be written as a linear function of the a;;,’s to be determined. If we want
to determine a given coefficient a,,,, we must find a special virtual field @* such that

condition 1: @* isl K.A. '
condition 2: r%nyA(Gfe" +ee;)dV =0 'Vz;ép orj#qork#r (18)
= [,V (e +ea€)dV =1 ifi=pand j=qgand k=r

14-0;;

With such a special virtual field #*, it follows

a — / T(M,n) - it' (M) dS (19)

S,

If only the resulting force applied on the specimen is known, the above condition 3 must be verified. In
the same way, in the particular case where the actual field is known only over V' € V', the above conditions
4 and 5 must also be verified. Eventually, the special virtual field a* directly leads to the unknown a,,, .
It should be pointed out that such an identification procedure could be used in quality assessment,
for instance when the constitutive material is a polymer which is expected to exhibit a polymerization
gradient.

3.6. Displacement fields as input data

As can be stated in Eq. (6), the actual strain field is involved in the coefficients of the unknown pa-
rameters. In practice however, the whole-field optical methods generally provide displacement fields and
not strain fields.
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Even though efficient algorithms are available to differentiate those displacement fields to get the strain
fields (Surrel, 1994), it is clear that unavoidable noisy data disturb the displacement field, leading to some
inaccuracy in the strain field. Hence, it should be pointed out that the strain components in the integrals can
be transformed into displacements thanks to the Green’s formula. For instance, using the notation with two
indices, any coefficient of the mechanical parameter in Eq. (6) involves integrals of the type

/ul-‘ju;,dV: —/u,-u,’j’,jdV—ij{ uity ; cos(m, xj) dS (20)
4 v or

It is clear that only the actual displacement field is considered in the right-hand side of the above equation
(and not the actual strain field), but the final result is obtained by subtracting two quantities whose absolute
values could be close. As a consequence, specific numerical simulations are to be performed to compare the
stability of the two following approaches when noisy data are considered:

1. Differentiating the measured actual displacement field and computing the coefficients of the unknown
parameters with the left-hand side in Eq. (20).

2. Computing the coefficients of the unknown parameters by subtracting the two terms in the right-hand
side in Eq. (20) where the measured actual displacement field is involved.

3.7. Case of non-linear constitutive equations

3.7.1. Polynomial stressistrain relation
Let us consider the case where the stress/strain relation is a polynomial

=> 074 (21)
t=1

t is a power and (¢) is a superscript.
Assuming that the Qg)’s are constant over V, the principle of virtual work may be written as

3ol /V derdy = / T(M,n) - u'(M)dS (22)
=1

Sy

If we want to determine a material parameter Qg;, we must find a special virtual field a* such that

condition 1: a* 1s K.A.
condition 2: 1+5 Ji( e"e*—i—e VYAV =0 Vi#porj#qork#r (23)
fVee —1—6"6* dV=1 if i=pandj=qgand k=r

1+o,

With such a special virtual field denoted @*, it follows
o) = / T(M,n) -0 (M)dS (24)
Sy

If only the resulting applied forces are known, conditions 3 in Section 3.2.1 must be verified. In the
particular case where the actual field is known only over V' € V, conditions 4 and 5 in Section 3.2.2 must
also be verified. Eventually, the special virtual field a* directly leads to the unknown Qz(fq)

3.7.2. Other cases

When the stress/strain relationship does not write as a polynomial, the principle of virtual work no more
leads to a linear equation where the material parameters are the unknowns, but to a non-linear equation. In
this case, for any virtual displacement field @*, one can write a residual R(u*) defined by
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Rw) = (/Va[e;‘dV—/S/ T,ude)z (25)

Introducing the non-linear constitutive equations a; = f'(e,,...,€), where some material parameters are
unknown, Eq. (25) becomes

R(u') = </Vf(ex,...,es)ede—/S/ T,-u:ds>2 (26)

This residual is zero for any virtual field when the tested specimen is in equilibrium. The idea for finding the
unknown material parameters is first to build up a cost-function F with a limited number of residuals that
correspond to N different virtual fields w®, i = 1,..., N chosen a priori and second to minimize this cost-
function with respect to the unknown parameters

F= ZN:R(u*@) (27)

3.8. Conclusion

It has been shown that when the constitutive equations may be written as polynomials, some special
virtual fields @*, when they exist, directly provide the coefficients of these polynomials. Let us now examine
the practical determination of these special virtual fields. For the sake of simplicity, only the case of linear
anisotropic elasticity is addressed in the following section.

4. Practical determination of the special virtual fields
4.1. Choosing a basis for expressing the special virtual fields

Let us now examine the automatic determination of the special virtual fields @* with a numerical method.
This issue is essential since the VFM becomes very general if such a procedure is available.

First, a basis of independent functions must be chosen to expand the virtual fields. Two main approaches
can be investigated at this stage:

e The virtual displacement fields are defined piecewise, like the actual displacement field in the finite ele-
ment method. In this case, the unknowns are the nodal virtual displacements and the virtual field is ex-
panded with a local basis of suitable functions.

e The virtual displacement fields are expanded with the same basis of functions over the whole geometry.
The unknowns are the coefficients of these functions.

Since one can expect more difficulties in the numerical implementation of the procedure for finding the
virtual nodal displacements, only the second procedure is described herein. Any set of independent func-
tions like polynomials or sine functions could be used to expand the virtual fields in this second procedure.
The virtual fields to be determined are expressed as a weighted sum of these basis functions. It is difficult to
predict a priori which type of function is the most suitable one. Indeed, it must be pointed out that the
integrals in Eq. (6) involve both the actual and the virtual fields. The former one comes from a set of
measurements known at a large number of points and is noisy in practice. The latter one, after expansion,
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involves the functions of the basis which are rigorously known at every point where the measurements are
performed. From a numerical point of view, the present problem is therefore somewhat different of the well-
known problems encountered in the finite element method since the functions which are computed in
practice in this last case are known exactly. Polynomials have been arbitrarily chosen in the present work as
basis functions to expand the virtual fields but it is clear that further studies must be undertaken to check
which type of basis function leads to the best results. With polynomials, the components of the special
virtual displacement field @* may be written as

=302 (1) () ()

i =Y B () (3)(3)" 28)
i=0j=0k=0

i = 235200 () ()’

where L, H and K are representative dimensions along the x-, y- and z-directions respectively. This nor-
malization provides in practice coefficients 4;;, B and C;; which have about the same order of magnitude.
This feature is useful for their numerical determination, as shown in Grédiac et al. (2002). The problem is
now to determine the 4;;’s, the B;;’s and the C;;’s from the three conditions listed above.

4.2. Equations induced by condition 1

As recalled in condition 1, the virtual displacement field must be first KA. Two cases may occur in
practice.

4.2.1. The solid is supported at a finite number of points

If we assume that S, reduces to a finite set of points M,, v = 1,...,/ (i.e. the solid under consideration is
supported at / points M, (x,, y,,z,),v = 1,...,[), condition 1 leads to 3 x [ linear equations where the 4;;’s,
the B;;’s and the C;;’s are the unknowns

a;_;)ZOEA,,k(“) ()Y (2)'=0 w=1,....1
ﬂ;:ZZZBUk(’%)(%)’(—) =0 Wo=1,....1 (29)
a*—;)z()kzocuk(ﬂ(%) () =0 vo=1,.01

Note that the above equations can be avoided by choosing directly the following expression for the virtual field

i = (= x) 00— 3 — 2) x (iﬂiﬂ}{i@w(z)’(;) (2)")
i = T — )y — 3z~ 2) x (zﬂzﬂszw(%) (%)'(%)k> (30)

~x ! x k
= (x—x,)y—n)z-2z)x (Z(:)Z%AZE)CU/((Z) (%) (E) )

i=0j
The counterpart is the fact that the derivation of the virtual field to get the virtual strain components
involved in Eq. (1) will be somewhat more complicated. This approach will be limited in practice to the
cases where the number of supports / is low.
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4.2.2. The solid is clamped along a surface
Let us now assume that S, is a curve described by the following equation

g(x,y,2) =0 VM(x,y,z) €S, (31)

In the same way as the preceding case, the virtual field can be chosen as

ﬁ;:g(x’yv ) (ZZZAU"(E)I(I;)(;()](>

i=0j=04=0

i = g(x..) x (zzza,k@) ) w) @)

i=0j=04=0

A X z\k

uz :g(.X',y, ) (ZZZC’J]‘(Z) (%) (E) >
i=0j=0k=0

to eliminate the equations coming from condition 1 since the special virtual field in Eq. (32) is directly

admissible. The types of fields (28), (30) or (32) are chosen according to the shape of the solid and to the
type of boundary conditions.

4.3. Equations induced by condition 2

Let us now examine condition 2. In practice, condition 2 leads to linear equations where the 4,;’s, the
Byy’s and the Cyy,’s are the unknowns. There are as many equations as unknown coefficients Q;; to be
identified, as can be easily verified in Eq. (7). These equations cannot be written in the general case since
they depend on the expression of the special virtual fields in Egs. (28), (30) or (32). The right-hand side of
those equations is either 0 or 1, according to the parameter which is to be determined.

4.4. Equations induced by conditions 3, 4 and 5

One can easily check (see Grédiac et al. (2002)) that conditions 3, 4 and 5 lead in practice to linear
equations between the unknown coefficients since they only involve conditions on the displacement field.
Such equations are different from one case to the other. They are therefore not detailed here.

4.5. Final system

Eventually, since the equations are all linear, they lead to the following linear system
DY =E (33)

where D is a rectangular matrix with as many columns as unknown coefficients 4;;’s, B;’s and Cy’s.
Its number of rows depends on the number of parameters to be identified and on the number of condi-
tions which must be verified since conditions 4 and 5 are optional, E is a vector which components
are equal to 0 or 1 and Y is a vector which components are the unknowns coefficients 4,;’s, B;’s and
ijk’S
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4.6. Strategy for finding the coefficients characterizing the virtual fields

The number of columns in D is at least equal to the number of unknown parameters Q;; to be identified
(condition 2 above). Otherwise, D cannot be inverted. The actual number of columns is equal to the number
of unknown coefficients 4,;’s, B;;’s and Cy;’s. It depends in practice on the choice of the maximum degree
chosen for the expansion of the virtual fields. This number of columns, denoted n,,, is equal to

k= +D(m+ Do+ D)+ @+ D@+ DFr+D)+ 6+ D+ 1D(u+1) (35)

To determine exactly these unknowns, the number of linear equations available in the final system, denoted
Tequ (Which is also equal to the number of columns in D), must be equal to ny, and the determinant of D
must be different from 0. When the number of unknowns 7,y is greater than the number of equations 7cqy,
matrix D is rectangular and the number of solutions is a priori infinite. They are found by setting
(Munk — nequ) coeflicients A;;’s, Bi’s or Cy’s to values fixed arbitrarily. The linear system (33) is the rear-
ranged and solved to obtain the remaining parameters (those which were not fixed a priori) if the deter-
minant of the remaining square matrix of this new linear system is not zero. The value of this determinant
cannot be discussed in the general case and the problem can be solved in practice by examining any possible
combination of neq, columns among the n,, columns, as shown in Grédiac et al. (2002). The value of the
Aii’s, Bi’s and Cy’s fixed a priori can be chosen randomly. In practice however, these values are set to zero
(Grédiac et al., 2002). The determinant of the square matrix of the final system is computed in each case. If
this determinant is greater than a selected threshold value, the remaining parameters are computed and the
special virtual field is completely determined (by the ny, — nequ parameters fixed a priori and by the neqy
parameters found by inversion of the system). In practice, with such a method, we will get a very large
number of identified parameters: one per different special virtual field. Hence a very large number of es-
timates for each unknown parameter is available. This very interesting feature allows a possible selection of
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the “best” special virtual fields (and therefore the best estimate for an unknown parameter) with respect to
a given criterion, for instance the stability when noisy data are processed (Grédiac et al., 2002).

4.7. Reduction of the dimension of the problem

The special virtual fields defined above directly provide the unknown parameters and a general nu-
merical strategy has been proposed for finding them. The coefficients of the polynomials depend however
on the actual strain field inside the solid to be characterized. Such quantities cannot be measured in practice
whereas strain field over a surface can be measured using whole-field optical techniques. The dimension of
the problem must be reduced from 3 to 2 for this reason and the solid becomes a plate. In practice, the
strain field onto the external surface of the plate is measured and the strain inside it is deduced with an
assumption. Two main cases can be distinguished in practice:

e In-plane problems: The through-thickness strain field is assumed to be equal to the strain field onto the
external surface of the plate. Such a case is addressed in Grédiac et al. (2002).

e Bending problems: The through-thickness strain field is obtained with the Love—Kirchhoff assumption
for instance.

5. Conclusion

The main features of the VFM used with special virtual fields are described in this paper. It has been
shown that the so-called special virtual fields allow the direct identification of material constants from
measured actual displacement/strain fields, provided that the constitutive law may be written as a poly-
nomial of the strain components. Each unknown parameter is directly obtained with the virtual work of the
applied loading produced with its associated special virtual fields. Hence, the iterative calculations carried
out when finite element models are updated are avoided. A general numerical procedure for finding these
special virtual fields has been given. The practical determination of these virtual fields, the accuracy and the
stability of this general procedure can be assessed through an example described in a companion paper
(Grédiac et al., 2002).

References

Araujo, A.L., Soares, C.M.M., Freitas, M.J.M., 1996. Characterization of material parameters of composite specimens using
optimization and experimental data. Composites Part B 27 (2), 185-191.

Ayorinde, E., Gibson, R., 1993. Elastic constants of orthotropic composite materials using plate resonance frequencies, classical
lamination theory and an optimized three-mode Rayleigh formulation. Composites Engineering 3 (5), 395-407.

Bledzki, A.K., Kessler, A., Rikards, R., Chate, A., 1999. Determination of elastic constants of glass/epoxy unidirectional laminates by
the vibration testing of plates. Composite Science and Technology 59, 2015-2024.

Broughton, W., 1994. An overview of through-thickness test methods for polymer matrix composites. Technical report, National
Physical Laboratory DMM(A) 148.

Broughton, W., Lodeiro, M., Sims, G., 1998. Understanding the limitations of through-thickness test methods. In: Proceedings of the
4th European Conference on Composites: Testing and Standardisation, 31 August to 2nd September in Lisbon, Portugal, pp. 80-90.

Cunha, J., Piranda, J., 1999. Application of model updating techniques in dynamics for the identification of elastic constants of
composite materials. Composites Part B 30, 79-85.

Deobald, L., Gibson, R., 1988. Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh- Ritz technique.
Journal of Sound and Vibration 124 (2), 269-283.

De Wilde, W.P., 1990. Identification of the rigidities of composite systems by mixed numerical/experimental techniques. In: Mechanical
Identification of Composites. Elsevier, Amsterdam, pp. 1-15.



M. Grédiac et al. | International Journal of Solids and Structures 39 (2002) 2691-2705 2705

Frederiksen, P.S., 1997. Numerical studies for identification of orthotropic elastic constants of thick plates. European Journal of
Mechanics A/Solids 16, 117-140.

Gipple, K., Hoyns, D., 1994. Measurement of the out-of-plane shear response of thick section composite materials using the V-notched
beam specimen. Journal of Composite Materials 28 (6), 543-572.

Grédiac, M., 1989. Principe des travaux virtuels et identification/principle of virtual work and identification. Comptes Rendus de
I’Académie des Sciences, 11/309:1-5. Gauthier-Villars, in French with Abridged English Version.

Grédiac, M., 1996a. On the direct determination of invariant parameters governing the bending of anisotropic plates. International
Journal of Solids and Structures 33 (27), 3969-3982.

Grédiac, M., 1996b. The use of heterogeneous strain fields for the characterization of composite materials. Composite Science and
Technology 56, 841-846.

Grédiac, M., Auslender, F., Pierron, F., 2001. Applying the virtual fields method to determine the through-thickness moduli of thick
composites with a non-linear shear response. Composites/Part A 32 (12), 1713-1725.

Grédiac, M., Fournier, N., Paris, P.-A., Surrel, Y., 1998. Direct identification of elastic constants of anisotropic plates by modal
analysis: experiments and results. Journal of Sound and Vibration 210 (5), 645-659.

Grédiac, M., Paris, P.-A., 1996. Direct identification of elastic constants of anisotropic plates by modal analysis: theoretical and
numerical aspects. Journal of Sound and Vibration 195 (3), 401-415.

Grédiac, M., Pierron, F., 1998. A T-shaped specimen for the direct characterization of orthotropic materials. International Journal for
Numerical Methods in Engineering 41, 293-309.

Grédiac, M., Pierron, F., Surrel, Y., 1999. Novel procedure for complete in-plane composite characterization using a T-shaped
specimen. Experimental Mechanics 39 (2), 142-149.

Grédiac, M., Toussaint, E., Pierron, F., 2002. Special virtual fields for the direct determination of material parameters with the virtual
fields method. 2—Application to in-plane properties. International Journal of Solids and Structures 39 (10), 2707-2730.

Grédiac, M., Vautrin, A., 1990. A new method for determination of bending rigidities of thin anisotropic plates. Journal of Applied
Mechanics 57, 964-968.

Hendricks, M.A.N., 1991. Identification of the mechanical properties of solid materials. Doctoral dissertation, Eindhoven University
of Technology.

Hwang, S.-F., Chang, C.-S., 2001. Determination of elastic constants of materials by vibration testing. Composites Structures 49, 185-
190.

Mespoulet, S., 1998. Through-thickness test methods for laminated composite materials. Ph.D. thesis, Imperial College of Science and
Medicine, London, UK.

Mota Soares, C., Moreira de Freitas, M., Araujo, A.L., Pedersen, P., 1993. Identification of material properties of composite plate
specimens. Composite Structures 25, 277-285.

Okada, H., Fukui, Y., Kumazawa, N., 1999. An inverse analysis determining the elastic—plastic stress—strain relationship using
nonlinear sensitivities. Computer Modeling and Simulation in Engineering 4 (3), 176-185.

Pagano, N.J., Halpin, J.C., 1968. Influence of end contraint in the testing of anisotropic bodies. Journal of Composite Materials 2 (1),
18-31.

Pedersen, P., Frederiksen, P.S., 1992. Identification of orthotropic materials moduli by combinated experimental numerical approach.
Measurements 10, 113-118.

Pierron, F., Alloba, E., Surrel, Y., Vautrin, A., 1998. Whole-field assessment of the effects of boundary conditions on the strain field in
off-axis tensile testing of unidirectional composites. Composites Science and Technology 58 (12), 1939-1947.

Pierron, F., Grédiac, M., 2000. Identification of the through-thickness moduli of thick composites from whole-field measurements
using the Iosipescu fixture: theory and simulations. Composites: Part A 31 (4), 309-318.

Pierron, F., Zhavaronok, S., Grédiac, M., 2000. Identification of the through-thickness properties of thick laminates using the virtual
fields method. International Journal of Solids and Structures 37 (32), 4437-4453.

Pindera, M.-J., Herakovich, C.T., 1986. Shear characterization of unidirectional composite with the off-axis tension test. Experimental
Mechanics 26 (1), 103-112.

Prabhakaran, R., Chermahini, R.G., 1984. Application of the least-squares method to elastic and photoelastic calibration of
orthotropic composites. Experimental Mechanics 24, 17-21.

Rouger, F., Khebibeche, M., Govic, C.L., 1990. Non determined tests as a way to identify wood elastic parameters: the finite element
approach. In: Proceedings of Euromech Colloquium 269 Mechanical Identification of Composites. Elsevier, Amsterdam, pp. 82—
90.

Sol, H., 1986. Identification of anisotropic plate rigidities using free vibration data. Doctoral dissertation, University of Brussels.

Surrel, Y., 1994. Moiré and grid methods: a signal-processing approach. Interferometry ’94: Photomechanics. In: Pryputniewicz, R.J.,
Stupnicki, J. (Eds.), Proc. Soc. Photo-Opt. Instrum. Eng., vol. 2342, pp. 213-220.

Wang, W.T., Kam, T.Y., 2001. Elastic constants identification of shear deformable laminated composite plates. Journal of Engineering
Mechanics 127 (11), 1117-1123.



